skip to main content


Search for: All records

Creators/Authors contains: "Das, Arun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background In modern sequencing experiments, quickly and accurately identifying the sources of the reads is a crucial need. In metagenomics, where each read comes from one of potentially many members of a community, it can be important to identify the exact species the read is from. In other settings, it is important to distinguish which reads are from the targeted sample and which are from potential contaminants. In both cases, identification of the correct source of a read enables further investigation of relevant reads, while minimizing wasted work. This task is particularly challenging for long reads, which can have a substantial error rate that obscures the origins of each read. Results Existing tools for the read classification problem are often alignment or index-based, but such methods can have large time and/or space overheads. In this work, we investigate the effectiveness of several sampling and sketching-based approaches for read classification. In these approaches, a chosen sampling or sketching algorithm is used to generate a reduced representation (a “screen”) of potential source genomes for a query readset before reads are streamed in and compared against this screen. Using a query read’s similarity to the elements of the screen, the methods predict the source of the read. Such an approach requires limited pre-processing, stores and works with only a subset of the input data, and is able to perform classification with a high degree of accuracy. Conclusions The sampling and sketching approaches investigated include uniform sampling, methods based on MinHash and its weighted and order variants, a minimizer-based technique, and a novel clustering-based sketching approach. We demonstrate the effectiveness of these techniques both in identifying the source microbial genomes for reads from a metagenomic long read sequencing experiment, and in distinguishing between long reads from organisms of interest and potential contaminant reads. We then compare these approaches to existing alignment, index and sketching-based tools for read classification, and demonstrate how such a method is a viable alternative for determining the source of query reads. Finally, we present a reference implementation of these approaches at https://github.com/arun96/sketching . 
    more » « less
  2. Peter, Robinson (Ed.)
    Abstract Motivation As genomic data becomes more abundant, efficient algorithms and data structures for sequence alignment become increasingly important. The suffix array is a widely used data structure to accelerate alignment, but the binary search algorithm used to query, it requires widespread memory accesses, causing a large number of cache misses on large datasets. Results Here, we present Sapling, an algorithm for sequence alignment, which uses a learned data model to augment the suffix array and enable faster queries. We investigate different types of data models, providing an analysis of different neural network models as well as providing an open-source aligner with a compact, practical piecewise linear model. We show that Sapling outperforms both an optimized binary search approach and multiple widely used read aligners on a diverse collection of genomes, including human, bacteria and plants, speeding up the algorithm by more than a factor of two while adding <1% to the suffix array’s memory footprint. Availability and implementation The source code and tutorial are available open-source at https://github.com/mkirsche/sapling. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Small unmanned aircraft systems (UAS) can increase efficiency and reduce risk to humans during the inspection of truss-supported structures such as steel bridges. This paper describes a method to mathematically represent a truss and subsequently to plan an efficient, collision-free path from a given starting position to a given goal. The algorithm generates a deterministic roadmap which connects nodes that are generated near the joints of the structure. This roadmap is then searched for the path using a lazy A* algorithm. Simulation results show the functionality of the algorithm. Comparison with a probabilistic roadmap method indicates the proposed algorithm's efficiency. 
    more » « less